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ABSTRACT 

~/ > o s 3  
Explorer 6 satell i te data and surface magnetograms are used t o  study the  

gradual and sudden commencement geomagnetic storms of August 16-18, 1959. 

ys i s  of these data provides the  following conclusions: 

Anal- 

1. 

2. 

3. 

The geomagnetic f i e l d  was strongly perturbed but retained its 

essentially dipolar character out t o  geocentric distances of 8 earth 

radii. 

A long period variation i n  the  distant f i e l d  coincided with 

the  surface. 

-2.5 times larger than at the  surface. Variations i n  the  f i e l d  

direction at -7RE 

zontal camponent at the  surface and (b) the 3 hour K index. 

Large irregular f i e l d  fluctuations with periods exceeding one minute 

Dst at 

The magnitude of the  main-phase decrease at  RE was 

correlate with half-day variations i n  (a) t h e  hori-  

w e r e  characterist ic of t h e  storm period. &=- 
%ortions of t h i s  paper w e r e  presented & t h e  International C o e e n c e  pn 

Cosmic Rays E d  the  - -  Earth Storm, G o t o ,  Sept. l@l~[Smith and Son% 1 9 6 2 1 h  
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4. The large-scale storm f i e l d  was qualitatively similar t o  the  disturbance 

f i e l d  observed previously on nonstorm W s .  

appeared t o  evolve from quiet t o  disturbed conditions followed by a 

The disturbance f i e l d  

gradual recovery. 

Simultaneous measuremerrts of the  f i e l d  at t h e  surface and i n  the  magneto- 

sphere a re  essent ia l  t o  a be t te r  understanding of magnetic stamus, since t h e  

solar effects responsible for storms can be strongly modified by a conrplicated 

interaction with the earth's o d e r  atmosphere. 

Lunik 2 [Sonett , Judge , Sims , and Kelso, 1960; Ki-assws~, 19601, traversed the 

distant geomagnetic f ie ld  during nonstorm intervals.  

launched during the  recovery phases of a s tm [Coleman, Sonett, Judge, and 

Space probes, ploneer 1 and 

Pioneer 5 and Lunik 1 were 

Smith, 19601 and Vanguard 3 (apogee -10,OOO km) measured t h e  f ield above t h e  

ionosphere during an interval  which included several moderate mgnetic starme 

[Heppner, Stolarik,  Shapiro, and Cain, 19601. 

t i v e  measurements of the earth 's  f i e ld ,  between 4 and 8 earth radii, during a 

Explorer 6 made t h e  first, repeti- 

magnetic storm. 

The s a t e l l i t e  magnetic f i e l d  data obtained by Explorer 6 at geocentric 

distances between 4 and  RE (earth radii)during a severe magnetic storm are wed 

below t o  study the  gross characteristics of t h e  large-scale storm field surrounding 

t h e  earth. 

possible existence of a main phase ring current. 

distant f ie ld  are also compared with variations i n  the  intensity of the outer 

radiation zone during the storm. 

l ished previously i n  a preliminary report [Smith and Sonett 

The physical origin of t h e  storm f i e l d  is  investigated, including t h e  

Long-period variations i n  t h e  

Same of the  data t o  be discussed were pub- 

19621. 
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BACKGROUND 

Instrument at ion 

The detecting element of t he  magnetometer, a solenoid wound on a high 

permeability core, was attached t o  the she l l  of t h e  spin-stabilized spacecraft 

which rotated 2.7 times per second. In an ambient stationary magnetic f ie ld ,  a 

sinusoidal voltage was generated with a frequency equal t o  the  spin rate and an 

amplitude proportional t o  B,, the  component of t h e  magnetic f i e l d  perpendicular 

t o  the  spacecraft spin axis (see f ig .  1). 

fier having a pass band centered a t  t h e  spin frequency and a quasilogarithmic 

gain achieved by 2s.Lr-g an AGC loop. This extended t h e  dynamic range of t he  

magnetometer t o  3 orders of magnitude so tha t  fields could be measured over an 

extended range of alt i tudes.  

The electronics consisted of an ampl i -  

The magnetometer c o i l  constant, the numerical re la t ion  between f i e l d  

strength and the  induced voltage, w a s  determined by camparing the  voltages gen- 

erated when the  search c o i l  and a standard air-core c o i l  w e r e  simultaneously 

rotated i n  the earth 's  f i e l d  i n  a region where gradients were small. 

input voltages w e r e  used t o  obtain steady-state electronic calibration. 

Sinusoidal 

(The 

transient response of t he  magnetometer is not pertinent t o  t h i s  paper and w i l l  be 

discussed elsewhere.) In  a given f i e l d ,  t he  output signal depended on the  spin 

rate of the  spacecraft and was only slightly dependent on t h e  temperature of the  

electronics which was checked-by means of several temperature sensors located 

inside t h e  spacecraft. The satell i te spin r a t e  was the  number of cycles of the  

telemetered sinusoid i n  a given time period. Further detai ls  of t he  equipment and 

i ts  calibration are reported elsewhere [Judge, Sims, and McLeod, 19601. 

E a r l y  recognition of the  importance of directional data [Sonett, Judge, and 

Kelso, 19.591 l ed  t o  t h e  inclusion of a photodiode sun scanner and phase comparator. 
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This instrument provided a phase reference, based on t h e  solar direction, and 

determined, i n  f l ight ,  the  directional variations i n  B,. 

t h i s  type of instrument has been supported by subsequent events, and now sun 

scanners a re  standard fo r  spinning spacecraft magnetic f i e l d  orientation. 

The m e r i t  of including 

The phase colnpasator measured the angle, ~p, between Bl and SI, where 6, 

i s  the  projection in to  the  spacecraft equatorial plane of a unit vector pointing 

i n  the  direction of the sun (see f ig .  1). 

angle. 

spacecraft-sun direction, and it depends on t h e  orientation of the spacecraft 

Hereafter, cp is  called the  phase 

It i s  t h e  magnetic declination i n  spacecraf't coordinates referred t o  the  

spin axis. 

The phase comparator input signals were the  search c o i l  sinusoid and a 

sequence of pulses generated by a photodiode when illuminated by solar radiation 

once per spacecraft revolution (fig.  2) .  The photodiode pulse and a pulse coin- 

cident with t h e  zero-voltage crossing of t h e  search c o i l  sinusoid operated Schmidt 

t r iggers  that controlled the s t a t e  of a flip-flop. 

integration of t he  f l ip-f lop output signa1,was a d-c voltage proportional t o  t h e  

time delay between the  t w o  pulses. Except for  very small f ie lds ,  t he  phase com- 

parator output was independent of t he  magnitude of t h e  search c o i l  sinusoid and 

the  measurement of cp was independent of B,. 

The output, obtained by 

The search c o i l  and phase comparator analog voltages, which w e r e  frequency 

modulated and transmitted continuously, were received at  one or more STL ground 

s ta t ions (England, Florida, Hawaii, and Singapore) fo r  approximately 18 hours of 

each day. 

voltage by a peak detector and f i l ter  and was digit ized inside the  spacecraft along 

with the  phase comparator output. 

which were commanded from the  ground at  irregular intervals,  w e r e  used primarily 

t o  check the  quality and accuracy of the telemetered analog data. 

The seazch c o i l  sinusoid was a lso  converted t o  a slowly varying d-c 

The transmissions of binary-coded d ig i t a l  data, 
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O r b i t a l  F%xrametere 

Af te r  Explorer 6 wa6 launched i n  A u g u s t  1959, much time and effort xae 

expended i n  refining t h e  ephemeris because of perigee drag fluctuations and 

solar-lunar perturbations, a poorly understood subject in 1959. With the  estab- 

lishment of' an accurate orbit  and a precise spin exis oriektatian, the  m e  subtle 

effects i n  the data, such as t h e  properties of t he  disturbance f i e l d  near t h e  geo- 

magnetic equator, w e r e  made accessible. 

The Ekplorer 6 orbit  (apogee, 48,000 km; perigee, 6740 km) w a ~  highly 

eccentric. 

apogee was at geographic la t i tude -20°. 

plane at  geocentric a l t i tudes  of 7200 and 30,000 km. 

t i on  of the  a r b i t  onto the  surface of the  earth. 

The o r b i t a l  plane was inclined 47' t o  t he  geographic equator and 

The spacecraft crossed the  equa to r id  

Figure 3 shows t he  projec- 

The s a t e l l i t e  was launched from Atlantic Missile Range at 1345 GMP on 

August 7, 1959. 

located on the  opposite side of t h e  earth at 2100 hours local time. 

the projection onto the  geographic equatorial plane of the semimajor axis of t h e  

orbit  made an angle of -135' with respect t o  the  earth-sun direction. 

decreased by approximately lo per day. 

t he  spin axis w e r e  217' and 23O, respectively. 

Since perigee occurred at about OgOO hours loca l  time, a€Wee YSB 

On August 7, 

T h i s  angle 

The r ight  ascension and declination of 

The orb i ta l  period, l2-3/4 hours, had an important effect  on the  i n s t a n t a w  

location of the spacecraft i n  geamsgnetic coordinates. 

netic pole i s  inclined 11-1/2O with respect t o  the  rotation axis, the geomagnetic 

la t i tude  of a given orb i ta l  position underwent a semidiurnal variation as large 

as 23'. 

netic f i e l d  and the  orb i ta l  position of the  spacecraft mer two complete revolu- 

t ions were only sl ight ly  asynchronous. 

Because the  earth's mag- 

However, as the  period was nearly I 2  hours, the  rotat ion of the  gemnag- 

This prompted us t o  divide the  data 
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obtained on odd-numbered and even-numbered passes into two separate groups i n  

order t o  i so la te  temporal changes i n  t he  geomagnetic f i e l d  more clearly. 

WNE!TIC CONDITIONS AT THE EAffT"S SURFACE 

A u g u s t  12, 13, and 14 were among t he  f ive  quietest days i n  A u g u s t  

[Lincoln, 19601 (fig, 4). 

reported at some stations. A t  approximately 0400 on A u g u s t  16, a sudden com- 

mencement storm began and continued u n t i l  t h e  end of the 17th or beginning of 

the 18th. 

or 9). 

at  0635 on A u g u s t  18 and ended at 2OOO hours the  same w. 
severe, sudden commencement storm began on August 20 at 0412. 

eral agreement as t o  when th i s  storm ended. 

ended on t h e  20 while others recorded disturbed conditions u n t i l  A u g u s t  24.) 

August 2'7 and 28 w e r e  t he  two quietest days of the month. 

(K = 6,7), sudden commencement storm began on September 3 at 2159 and continued 

u n t i l  September 5 or 6. 

the severe magnetic storm of August 16. 

On A u g u s t  15, a gradual ccmnnencement starm was 

T h i s  storm was classed as severe (corresponding t o  a K-index of 8 

Huancayo reported a moderate, gradual commencement storm which began 

A moderately 

There is  no gen- 

(Some stat ions estimated that it 

A moderately severe 

The discussion which follows is concerned primarily w i t h  

Review of the  Explorer 6 Data Obtained on Nonstorm Days 

I n  t h e  preliminary analysis of  the data the  msgnitude, BI, and direction, (p, 

of the  observed field were compared with the  magnitude and direction of the extrap- 

olated geomagnetic f i e l d  [Sonett, Smith, Judge, and Coleman, 1960; Sonett, Smith, 

and Sims, 1960; Smith, Coleman, Judge, and Sonett, 19601. 

spherical-harmonic expansion of t h e  surface f ie ld  [Vestine, 19591 was u s e d t o  

An 8 coefficient, 

derive a version of the geomagnetic surface f i e l d  extrapolated t o  t h e  satellite 
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posit ion and resolved in to  the  spacecraft coordinate system for  comparison with 

the  measured f ie ld .  This f i e l d  is  labelled G, and has spacecraft declination, 

PG' 

Discrepancies between B,, the  measured component, and GI, t he  extrapolated 

one,were observed throughout most of the trajectory.  

exhibit the  same a l t i tude  dependence as 

tude. 

and t h e i r  spacecraft declinations, cp and cpG. 

Below %E, B, tends t o  

G, but t o  have a somewhat U r g e r  magni- 

Beyond approximately %E, there was a marked disparity between BI, GI, 

An important consequence of the AGC loop i s  that the  re la t ive  and absolute 

accuracy of measurement increased w i t h  increasing al t i tude.  

of 1 percent i n  the output voltage corresponded t o  3007 

imate al t i tude,  12,ooO km), and t o  only 37 

38,000 km). The differences between B, and GI  beyond %E corresponded t o  large 

fract ional  changes (1.5 t o  20 percent) in  the  magnetometer output signal. 

For example, a change 

i n  a 50007 f i e l d  (approx- 

f i e ld  (approximate al t i tude,  i n  a 1007 

The 

experimental resu l t s  suggested that the ex t ra te r res t r ia l  f i e l d  was essentially 

dipolar out t o  %E, deviating progressively at greater al t i tudes.  

between GI and B l  

(The deviation 

depends strongly on the direction of B,, as well as on i ts  

magnitude.) A preliminary survey of data obtained throughout a 6-week interval  

showed that these differences were characteristic. Perturbations i n  B, and cp 

were always noted, although t h e i r  shapes varied f r o m  day t o  day and were strongly 

dependent on the geometry of t h e  experiment. 
4 

A perturbation field based on an equatorial current with a f in i t e ,  circulaz 

cross section and constant current density was used t o  explore possible causes 

of the  observed aifferences. The f i e ld  due t o  t h e  current was computed. a t  points 

on the  t ra jectory and added vectorially t o  t h e  geomagnetic field; a coordinate 

transformation was then performed t o  yield theoret ical  values of Bl and cp. 
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Reasonable agreement between the  data and the model calculations was obtained 

fo r  a westward current of 5.10' amperes centered at lORE [Smith, Coleman, Judge, 

and Sonett, 1% 1. 

Perturbations i n  the  distant geomagnetic f i e l d  w e r e  also subsequently 

observed by Pioneer 5 on the sunward side of t he  earth. 

i c a l  model was applied t o  t h e  Pioneer 5 magnetmeter data obtsined inside the  

When the  same mathemat- 
I 

geomagnetic f ie ld ,  reasonable agreement was again obtained between the  calculated 

and observed B l  for  a westward current of 5.10' amperes centered at &E and 

extending from 5 t o  l l R ~ .  

These model calculations, employing an ad hoc current, were just i f iably i 

cr i t ic ized  as ignoring an important feature of currents associated with trapped 

par t ic les .  The diamagnetic character of t he  trapped par t ic les  should lead t o  a 

maximum reduction of the  geomagnetic f i e l d  at  t he  peak of t h e  par t ic le  kinet ic  

energy distribution. 

data with a computed f i e l d  based on a model radiation zone. 

the  par t ic les  at -6R3 

Apel, Singer, and Wentworth (1962) derived a distribution of trapped pfcrticles 

1 

I 

Akasofu and Chapman (1961) campared the  Explorer 6, A u g u s t  9 
~ 

Their results place 

and suggest the total  current was "2.10' amperes. Similar ly ,  

I 

corresponding t o  the Pioneer 5 magnetometer data and found it t o  be centered at I 

 RE. 
c l e  distributions and did not take account of geometrical effects associated with 

the  data, such as t he  geomagnetic la t i tude and spin axis orientation of t h e  space- 

Although both these calculations employed ideal  rather than observed parti- 

I 
craf t ,  they undoubtedly lead t o  a m r e  r e a l i s t i c  estimate of where the  par t ic les  I 
causing the  Explorer 6 and Pioneer 5 f i e l d  deformations were located than our pre- ~ 

liminary model calculations. For example, compare the  vector disturbance f i e l d  

camputed *J AkESOfU, Cain, and Chapman (1961) ( the i r  f ig .  1) with the  Explorer 6 

vector measurements [Smith, 1962, f i g .  11. I 
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It should be noted that the m o d e l  calculations were applied t o  data obtained 

The Pioneer 5 data were acquired during t h e  

The Explorer 6 data obtained on August 9 

under disturbed magnetic conditions. 

recovery of a moderate magnetic storm. 

w e r e  i n i t i a l l y  regarded as nonstorm data because a preliminary classif icat ion did 

not l i s t  August 9 as a disturbed day. index 

reached a value of 4 during the  period the  data w e r e  obtained. 

which Kp exceeded 4 included storms. 

However, as figure 4 s h m ,  the  Kp 

All periods i n  

The data i n  f igure 5 w e r e  obtained on three successive days during the  severe 

SC storm which began on A u g u s t  16. 

The storm data show the  same qualitative features as t he  measurements made on 

nonstorm days (e.g., see f ig .  1 i n  Sonett, Smith, Judge, and Coleman, 1960). The 

f i n e  s t ructure  appesring i n  f igure 5 ,  for example, a variation of several  hundred 

gamma tha t  occurred at 30,OOO km on August 17, may be the  result of e i ther  spatial 

or temporal variations and is  a subject of special  in te res t  investigated separately 

i n  connection with bey-like, polar storm variations [Smith and Judge, 19611. 

I n  interpreting the  data, it is assumed tha t  t he  f ie ld  was perpendic5la ',o 

the  equatorial  plane on the  geomagnetic equator fo r  both quiet and storm time 

f ie lds .  

the  resul tant  f ie ld .  For nonequatorial points of observation, variations i n  Bl 

w e r e  caused by a change i n  the  direction as w e l l  as i n  magnitude of the  field. 

Thus, t rea t ing  the  equatorial measurements separately will simplie t h e  interpre- 

t a t ion  of the  experimental data. 

of the f i e l d  magnitude near t he  geomagnetic equatorial  plane. T h i s  i s  followed 

Therefore, t he  scalar f ie ld  measured at the  equator completely specified 

The next section describes the time dependence 
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by a discussion of f i e l d  direction at points of observation below the  equatarisl  

plane. The centered dipole approximation of t h e  ge-etic f i e l d  is used t o  

define t h e  geonmgnetic equator. 

Variation i n  the  Magnitude of t h e  Near-Equator ia l  
Field During t h e  Starm 

Figure 6(a) shows t h e  time variation of t he  f i e l d  magnitude i n  the  outer 

radiation zone. Each datum was obtained f r o m  a measurement of B, at a geocentric 

distance of approximately 24,000 Inn or  RE (the actual radial distance varied 

between 22,000 and 26,000 km). 

netic f i e ld  was computed and subtracted from B,. 

are plotted i n  figure 6(a) for approximately t h e  f irst  two weeks of Explorer 6 

observations. 

olated surface f i e l d  on magnetically quiet d a y s ,  a feature of t h e  data that could 

be caused by a lack of good absolute accuracy at t h i s  altitude, t h e  data i n  fig- 

The corresponding value of the  extrapolated geomag- 

The differences (AB, = B, - G,) 

Since the observed f i e l d  at 24,000 km tends t o  exceed t h e  extrap- 

ure 6(a) w e r e  adjusted so that BL = 0 on t h e  quietest days of the  month 

(August 11-12) by subtracting the  amount by which B, exceeded G, on August U. 

f r o m  all t he  differences. 

similarly adjusted, provide data at times for which no analog data were available. 

The d i g i t a l  data appearing i n  f igure 6(a), which w e r e  

Figure 6(b) is t h e  time variation of t h e  harizontal cmponent of t he  

surface f ie ld .  

at Huancayo, Peru, (geomagnetic latitude, $, -0.6~) obtained by averaging the  

hourly mean values over each Greenwich day, has been plotted at 1200 GBV. This 

procedure produced a reasonable representation of long period changes i n  the  

earth 's  field. 

so that &I = 0 on A u g u s t  ll-12. 

Each datum, t he  daily mean value of t he  horizontal intensi ty  

The variation i n  mean horizontal intensity has also been blased 
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The outstanding feature of t h e  Huancayo data is the  superimposed msgnetic 

starme of A u g u s t  15-20. 

intervals  during which the  horizontal component rose t o  i t s  highest values (August 

14-15, 26-28). 

The storm period WRS preceded and follawed by quiet 

The effect  of t he  SC storm which began on A u g u s t  16 is  paSticulesly 

noticeable. 

Figure 6(c),  which i s  a plot of t h e  smoothed Dst curve derived by cluqxnm 

and Akasofu [Arnoldy, Hoffman, and Winckler, 19603, s h m  the  history of the 

A u g u s t  16 s t o r m  i n  greater detail. 

ponent measured at I 2  observatories well distributed i n  l a t i t ude  and longitude. 

The data are averages of the horizontal com- 

The long-period variation of the storm f ie ld  at  t h e  surface coincides with a 

similar variat ion at an a l t i t ude  of -4 ear th radii (24,000 lan) . 
figures 6(a) ,  (b),  and (c) indicates t h a t  

and recovery at -ME which i s  essentially coincident with Dst at  t he  surface. 

The magnitude of t he  main phase decrewe is -140~ 

A cauiparison of 

B, undergoes a main phase decrease 

at  the  eurface and - 3 6 0 y  at 

4RE, that is, approximately two and one-half times as large. 

Variation i n  the  Direction of the Ext ra te r res t r ia l  Field During the  Storm 

Figure 7 shars  t he  departure of t h e  observed f i e l d  direction f’romthe 

direction of t he  extrapolated geomagnetic f i e l d  and contrasts the departures on 

storm d a y s  and quiet days.  

magnetic f ie ld  aspect indicatar (or phase comparator) are shown as a function 

The experimental measurements obtained from the 

of a l t i t ude  for three o rb i t a l  passes. 

phase angle for  t he  extrapolated geomagnetic f ie ld  (qG) 

Also shown are theoret ical  values of t h e  



A t  geocentric distances of l e s s  than lO,O00-15,OOO lan, cp = rpG becawe 

of the  "stiffness" of the geomagnetic f i e l d  near the earth (i .e. ,  a traneveree 

disturbance f i e l d  of several hundred gasrma would not produce an observable change 

in  the  direction of the  dipole f i e l d  lines). 

(1500 < CP < 30O0) was observed near t h e  earth and at great distances. 

agreement between rp and rpG near perigee prwides a check on the  consistency of 

the aspect indicator calibration. 

Fortunately, the  same range of angles 

Thus, the . 

A t  large distances from the earth, where Fxplorer 6 was at southern 

geomagnetic lati tudes,  t he  phase deviation, Acp = cp - cpG, was negative. 

geomagnetic' equator (6M = 0 i s  indicated in  figs. 8 though 11 and the  geomagnetic 

latitude of the  spacecraft 88 it travelled from 20,OOO km t o  apogee is shown in 

fig.  14), Acp was ei ther  zero ( p s e s  16, 18, and 20) or s l igh t ly  negative 

(orbi ts  15, 17, 19, 21, and 22). 

On the  

The extent by which cp differed from rpG depended, i n  past, on t he  

t ra jectory of the Explorer 6 (i.e., the magnetic latitude of t he  spacecraft at 

a given altitude) Mag- 

net ic  storms occurred August 17 and September 4, while August Q was one of the 

quietest days of the  month (Ap 

On Augus t  27 and 13 Acp was smallest when, 88 figure 6 indicates, the  

There w a s  a l s o  a time variation appsrent i n  figure 7 

indices are included i n  the  figure). 

horizontal intensity at t h e  earth 's  surface rose t o  its highest value. 

observations are qualitatively consistent with a decreased westwbd current i n  

the  magnetosphere. 

These 
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Another feature of figure 7 was t h e  occurrence of f ine  structure during the 

magnetic storms. Several dis t inct  transients (such as those seen a t  30,000 Ism 

on August 17 and at 42,000 km on September 4) correlated with pulsating megnetic 

bays i n  the antarct ic  [Smith and Judge, 19611, and transient increases i n  the 

Esrplorer 6 sc in t i l l a to r  count ra te .  

occurrence of rapid variations i n  the sc in t i l l a to r  count r a t e  was typical  of 

According t o  Rosen and Farley [1961], the  

magnetically disturbed periods. 

Figures 8 through ll contain the  phase angle data for eight successive 

o r b i t a l  passes during August 15-18. ZKI, is t h e  sum of' the '3  hour, planetary IC 

indices during the 12-hour period carresponding t o  each o r b l t d  pass of the 

Explorer 6. The altitude at which the  spacecraft crossed the geomagnetic equa- 

torial plane is denoted i n  each figure by S, = 0 and an arrow (see f ig .  14 far 

the  position of the spacecral't at ather geomagnetic latitudes). 

between 

meridian plane (f ig .  12). 

I ~ M  is  an angle 

3, the Ekplorer 6 spin axis, and n, the normal t o  the  local magnetic 

The m e r i d i a n  plane contains the loca l  f ie ld  direction 

and the  center of t h e  earth. 

given by %x%, where % 
geomagnetic f ie ld  and 

spacecraft. The extent t o  which the spacecraft spin axis was rotated out of the 

magnetic meridian plane at different points along the t ra jectory is indicated by 

6~ The angle, b, is obtained when t h e  earth-sun vector and the  s a t e l l i t e  

radius vector are projected onto t h e  equator id  plane (fig. 13). 

The perpendicular t o  the  magnetic meridian plane i s  

i s  a unit vector i n  the direction of the  extrapolated 

is  a unit radial vector from the  earth's center t o  t he  

As discussed earlier, the data are divided in to  two groups i n  order t o  

minimize trajectory effects.  Figures 8 and 9 contain only the odd-numbered passes 

which generally occurred during t h e  first half of the Greenwich day, w h e r e a s  f ig -  

ures 10 and U contain even-numbered passes. There were small progressive changes 



i n  the  geomagnetic coordinates of the  spacecraft at a given point on the 

t ra jec ta ry  on the odd-numbered and even-numbered orbi ts  taken alone. 

ures 14 and 15 the a l t i tude  a t  which 

I n  fig- 

was zero progressed t o  higher a l t i -  % 
tudes during the odd-numbered passes and t o  lower altitudes during the  

even-numbered passes, - 

Figures 8 through 11 show a progressive enhancement of during the 

storm with a subsequent re turn  t o  prestorm values. 

consider a given ACp (e.g., Aq = -20°), which moved towesd lower altitudes 

during the  main phase of the storm @CP increctsing) and returned t o  higher 

a l t i tudes  during t h e  recovery phase E K p  decreasing). 

This rimy be seen if we 

Figure 16 provides an alternative view of t he  variations i n  clrp during the  

storm. 

function of t i m e .  

zorrtal intensity a t  t he  earth's surface. 

H at Huanceyo. The diurnal variation has been remwed. Figure 1 6 ( ~ )  is a plot 

of the  corresponding values of t h e  3-hour index, Kp. 

t an t  f ie ld  was correlated with both variations i n  the horizontal component and 

the degree of agitation of t h e  surface field. 

Figure 16(a) is a plot of rSp at a given altitude (40,OOO km) as a 

Figure 16(b) shows t h e  simultaneous variation i n  the hari-  

The data are hourly mean values of 

The direction of the dis-  

This correlation appears t o  include the i n i t i a l  phase of the  August 16 

storm. However, t h e  increase i n  and decrease i n  @, observed during the 

first quarter of A u g u s t  16, actually represented a superposition of two effects ,  

the i n i t i a l  phase of the  sudden commencement storm of August 16 and the  recovery 

phase of the gradual commencement storm of A u g u s t  15. 

storm on the  distant f ield can be seen i n  the  first t w o  data i n  figure 10 

(August 15) and by comparing figures 8(a) and lO(a) (successive passes). 

- 

The effect  of the  GC 

An 
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inspection of ground s ta t ion  magnetograms shows tha t  the  GC storm was of short 

duration. 

study t h e  effects  of t he  initial phase of t h e  SC storm. 

show t h e  effect  of t he  main phase decrease and recwery associated with the  

August 16 stmm. 

Because t h e  two storms overlap, it was not possible t o  i so l a t e  and 

The subsequent data 

Simultaneous Variations i n  Field Magnitude and Peak 
Intensity of t he  O u t e r  Radiation Zone 

Figure 17(a) i s  the  same as figure 6(d), that is, ABl at -4RE. Measurements 

of t he  peak intensi ty  of t he  radiation pa r t i c l e  fluxes i n  the  outer zone me a lso  

shown. Figures 17(b), (c ) ,  and (a) are the  Explorer 6 data obtained by t h e  

University of Minnesota Geiger tube, t h e  University of Chicago proportional 

counter, and the  Space Technology Laboratories s c in t i l l a t i on  count-. Prim t o  

the  s t o r m  of August 16, t he  primary peak i n  the  outer zone was located at approx- 

imately 24,000 km, on the  basis of Geiger tube data, [Arnoldy, Hoffman, and 

Winckler. 19601. Thus, equatorial f i e l d  measurements and Geiger tube measurements 

of t he  peak intensi ty  occur i n  the  same region of space and are esserrtiaUy s i m u l -  

taneous. 

displaced s l igh t ly  from 24,000 km [Fan, Meyer, and Simpson, 1960; Rosen and Farley, 

The peak of t he  outer zone as detected by t he  other two instruments was  

1961 1 

During t h e  storm main phase, there w a s  a substant ia l  decrease i n  the  count 

rates of t he  University of Minnesota and University of Chicago experiments, f o l -  

lowed by a large increase i n  the  par t ic le  fluxes during the  recwery phase of the 

storm. 

magnetic storm and has been observed by similar instruments on other s a t e l l i t e s .  

The s c i n t i l l a t o r  data departed from t h i s  general tendency during t h e  main phase. 

Th i s  behavior apparently is characterist ic of t he  outer  zone during a 
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Figure 17 shows that the  slm variatione i n  par t ic le  intensity correlate 

with the variations i n  f ie ld  magnitude at   RE. The count rates of the Geiger 

tube and proportional counter decrease when the  f ie ld  magnitude decreases and 

the sc in t i l l a to r  count r a t e  increases slightly. When the f ie ld  at @E recwers  

from the  effect  of the storm and returns t o  i t s  prestm value, all three pasti- 

c l e  count rates increase. 

order of magnitude la rger  than t h e i r  prestonu values. 

H a r w e r ,  the peak in tens i t ies  i n  the outer zone are an 

SUMMARY 

The experimental data can be slmrmRrized as follows: 

1. Long period time-dependent changes i n  the  dis tant  f ield coincided with 

Dst at t he  surface. 

2. The magnitude of t he  main phase decrease i n  BL was -2.5 times larger at 

-&RE than at the  surface. 

Irregular f ie ld  fluctuations, with periods exceeding one minute, w e r e  

observed during the  storm. The largest fluctuations oarrelate wi th  t h e  

occurrence of transient stormvariations observed at t h e  surface near 

the  polar regions. 

3 .  

4. Variations i n  the direction of t he  f ield at correlate with ha l f -  

day variations i n  (a) the  horizontal component of t h e  surface field, 

and (b) the three-hour, planetary K index. 

5.  The large scale perturbations of B, and cp during the  storm w e r e  

quali tatively similar t o  the  perturbations observed previously on 

nonstarm days .  
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6. The Dst variations i n  the  f ie ld  magnitude at   RE correlate with 

changes i n  the peak intensity of the outer radiation zone measured 

by three high-energy-particle detectors on Ekplorer 6. 

show a decreased intensity during the storm when the  f i e ld  magnitude 

is depressed. 

exceeded t h e  prestorm values a t  the same time the f ie ld  magnitude 

returned t o  i ts  quiescent value. 

Two detectors 

All three detectors measured peak intensi t ies  which 

DISCUSSION 

Characteristics of the LargeScale Storm Field 

The s t o r m  data at 4 t o  &E and the warld wide component of the  surface 

storm f i e ld  (Dst) have the same time dependence. 

at 1, 4, and 7 earth radii are essentially simultaneous, that is, possible t i m e  

delays are much less  than the  characteristic period of t he  

During the  storm, the earth was immersed i n  a large-scale magnetic f i e ld  that  

was manifest at  the surface as the  main phase decrease. 

Furthermore, the variations 

Dst variation. 

The characteristics of the D s t  f i e ld  at t h e  earth's surface can be described 

simply. 

of rotation uver the ent i re  surface. 

The f i e ld  is approximately uniform and antiparallel t o  the earth's axis 

Ideally, a complete description is  desired of the  magnitude and direction of 

the  Ds t  f i e l d  i n  the space surrounding the  earth. H o w e v e r ,  a complete descrip- 

t ion  i s  not possible from a single o r b i t i n g  s a t e l l i t e .  It is particularly d i f f i -  

cult  t o  distinguish between a radia,l dependence and a dependence on latitude or 

longitude when the trajectory is  a highly inclined el l ipse such as the Explorer 6 

orb i t .  

portions of the orb i t  where the e t u d e  of the disturbance f i e ld  was at leas t  

I n  addition, i n  the  instance of Explorer 6 useful data are restr ic ted t o  
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several percent of the magnitude of t h e  unperturbed geomagnetic f ie ld ,  as 

discussed previously. 

t he  large-scale storm f i e l d  from the  Ekplorer 6 data. 

We can, however, infer  several important properties of 

Later magnetometer 

experiments can extend and improve th i s  description. 

We now show that near the equatorial plane at klE, t he  storm field (LQI as 

dis t inc t  from BL) was directed southward, was alined with t h e  loca l  magnetic 

meridian plane, and had a magnitude of -3507. 

between the  spacecraft spin axis and t h e  normal t o  t h e  loca l  magnetic meridian 

plane, was approximately 105'. 

meridian plane. 

t i c  meridian planes w e r e  readily detectable. 

orbi t ,  t h e  phase angle was insensitive t o  rotations confined t o  magnetic meridian 

planes, which would leave rp equal t o  %. The phase data (figs.  8 through 11) 

show t h a t  

f i e l d  rotat ion out of the  magnetic meridian plane was smal l .  

give the  disturbance nearly i n  t h e  direction of G and show tha t  it was  small. 

It i s  unlikely that there i s  a strong disturbance para l le l  t o  the  spin axis. 

The 350y decrease i n  B, during the  main phase implies a reduction i n  the  mag- 

nitude of the  f i e l d  component para l le l  t o  G 

Assuming tha t  t he  f ie ld  ratated without a change i n  magnitude implies a rotat ion 

of 60' which would produce a f i e l d  wi th  a large radial component near t h e  equator. 

Such a f i e l d  would differ greatly fromthe geomagnetic f ie ld .  

for  example, t o  an interplanetary f i e l d  or a strongly deformed magnetic t a i l  

existing at 24,000 k m  and lying i n  a magnetic meridian plane. 

evidence discussed above including the  Explorer 6 trapped par t ic le  measurements, 

A t  24,000 lun, B M ,  t h e  angle 

Thus, the spin axis was nearly contained i n  the  

Consequently, f i e ld  rotations out of, or tramverse t o ,  magne- 

Conversely, along t h i s  part  of t he  

did not exceed 8' during the  storm. Therefore, my component of 

The measurements 
6 

by a factor of approximately 2. 

It would correspond, 

The experimental 
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makes it certain tha t  the  Ekplcrer 6 was inside the  geomagnetic field, 

particularly at  24,000 h. Therefore, it seems reasonable t o  conclude t h a t  t h e  

decrease i n  B, is primarily a decrease i n  magnitude, tha t  B and G were 

paxallel  near the  equator, and tha t  aB(t) i n  figure 6 is approximately t h e  magi - 
nitude of t he  t i m e  varying storm f i e l d  near t he  geamagnetic equatorial plane. 

Small deviations i n  f ie ld  direction cannot be ruled out but are not an essent ia l  

feature of the arguments presented here. 

Ring Current 

The disturbance observed during the  storm is very suggestive of a ring 

current. 

consider what observations would be needed for rigorous detection of this current. 

To deduce t h e  current from measurements of t he  magnetic field, it is necessary t o  

obtain 

curve. 

i n  a closed curve suitable for t h i s  purpose. 

awkward. 

coplanar and t o  compuke the  current through t h e  l i nes  between t h e i r  orbits. 

any event, quite accurate magnetic measurements would be needed. 

be content t o  compare the  observed f ie ld  with that predicted fo r  a ring current. 

To understand wby t h e  evidence i s  inconclusive, it is  instructive t o  

2.s round a closed curve,thus giving the  current through tha t  closed f 
Not only does Ekplorer 6 lack one component of 2, but no s a t e l l i t e  moves 

Such a measurement would, indeed, be 

One possibi l i ty  might be t o  use two satellites, whoee orbi ts  are nearly 

I n  

H e r e  then we must 

The ring current predicted is caused by trapped par t ic les  and can be regarded 

as ar is ing ei ther  from t he i r  anisotropic pressure distorting the  f i e l d  hydromag- 

netically or a5 a combination o f t h e i r  drifts and diamagnetic effect .  

is similas t o  pressure and causes an important depression of t he  f i e l d  strength 

where t h e  pressure is  high, roughly according t o  pressure balance between par t ic les  

The latter 



and field. 

protons with a pressure substantially higher than that of the  other known trapped 

Davis and Williamson 119631 have observed a population of trapped 

par t ic les .  

during quiet times and an increase i n  the i r  pressure by a factor of 3 was observed 

during one storm. 

the  effect  of t h e  protons observed by Davis and Williamson. 

For L > 4 the i r  pressure is about one tenth of the  magnetic pressure 

Akasofu E19631 has reviewed ring current theory and estimated 

It is worth noting 

that whereas the  disturbance at  the  ground corresponds t o  a westward current, t h e  

current due t o  trapped par t ic les  is  eastward on the  inner side of the  par t ic le  

distribution where the  par t ic le  pressure i s  increasing with 

rent flows on the  outer side and the resulting disturbance is  i l lus t ra ted  by 

AkasDfu's computations. 

a depression of lOO7 

2007 between 

The greater depression a t  

w i t h  Explorer 6 and is  due t o  the  eastward current near in.  

agreement could arise as follows. Firs t ,  only protons of >lo0 kev were observed 

by Davis and Williamson and softer protons might be important. 

proton pressure went up t o  one t h i r d  of the magnetic pressure, the pressure of 

softer par t ic les  could hardly be a dominant proportion, but it could change the  

maximum f ie ld  depression from 2207 

Explorer 12 was of course not t h e  same as that observed by Explorer 6 and sub- 

s tan t ia l  differences between different storms seem t o  be allowable. 

Akasofu's calculation i s  not self-consistent. Finally, should t h e  r ing current 

be incapable of accounting fu l ly  for  t h e  observed disturbance on the  traJectory of 

L. The westward cur- 

He  obtains for storm conditions i n  the  equatorial plane 

at the  ground, a maximum depression of somewhat m e  than 

L = 3 and 4 and a slight strengthening of the  f i e l d  beyond L = 6. 

L = 4 than a t  the ground i s  i n  quali tative agreement 

The lack of detailed 

Since the  observed 

to ,  say, 350~. Secondly, the  storm observed by 

Thirdly, 

Ekplorer 6, the  f ie ld  farther out is known t o  be dis tor ted i n  a quite different 

way. Th i s  distortion i s  not symmetric about the geomagnetic axis, but for the la te  
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evening meridian of Explorer 6, there  i s  some similari ty with the  changes of cp 

observed near apogee, as t h i s  distortion w i l l  now be discussed briefly.  

Distortion of the  Field i n  the  Outer Magnetosphere 

The solax wind, now cer t i f ied  by Mariner [Meugebauer and Snyder, 19621 , 
dis tor t s  t he  magnetosphere. 

been published (e.g., Midgley and Davis, 1963) most of which have neglected any 

interplanetary magnetic f i e ld ,  though others have considered t h i s  (e.g., Dungey, 

1963). Observations of t h i s  dis tor t ion were obtained from Explorers 10, 12, and 

14. 

apogee i n  the  evening direction. 

but for t h e  first 15 earth radii, t h e  f i e l d  strength was near t h e  dipole value 

while the direction gradually swung round and pointed away from t h e  earth ( t  !-% 

apogees of Explorers 6, 10, and 14  were south of t he  equatorial plane). 

[lg63] has published the  results of two successive passes of Explorer 14 near t he  

midnight meridian and separated by 36 hours. There was a magnetic storm two days 

Many theoretical  studies of t h i s  dis tor t ion have 

For comparison with Explorer 6, Explorers 10 and 14 are most relevant having 

Heppner, et  a l . ,  [1963 1 found a boundary fsr out, 

Cahill  

before t h e  first pass. On t h e  first pass t he  f i e l d  strength waa depressed from 

4 t o  8 radii by a roughly constant amount, -25-507, while farbher out t h e  f i e l d  

strength remained at -50-75y right out t o  apogee at 16 radii. On t h e  second 

pass the re  was no depression and the  f i e ld  strength settled at 30-507 

10 radii out t o  apogee. 

pointing away from t h e  earth, t he  swing occurring between 7 and 9 radii on t h e  

first pass and between 9 and ll radii On t h e  second pass. 

direction observed on Explorer 10, both published passes of Ekplorer 14 and 

unpublished passes of Explorer 14 ( C a h i l l ,  private communication) which resembles 

from 

On both passes the  direction swung round and s e t t l e d  

It is t h i s  change i n  

t h e  change i n  f i e l d  direction observed by Explorer 6 near apogee. The far field 



near t he  noon meridian was observed by Ekplorer 12 [Cahill  and Amzeen, 

19633 and behaves en t i re ly  differently,  demonstrating that t h e  dis tor t ion 

i s  qui te  asymmetric and therefore not due t o  a r ing current a l a e .  

The observations seem t o  f i t  Dungey's model, though fur ther  measurements 

a re  required t o  f i l l  i n  the  picture. 

model a r e  two concentrated current sheets, i n  both of which the  current flows i n  

the  direction opposite t o  the  o rb i t a l  motion of the  earth,  the  return current not 

being concentrated i n  sheets. One sheet i s  on the  day side, is  oriented normal 

t o  the  direction of the  sun, contains current flowing eastward, and has been found 

The outstanding features i n  t h i s  theore t ica l  

by Explorer 12. The other is on the  night side, oriented roughly i n  the  equatorial 

plane, contains current flowing westward, and has not yet  been found. The existence 

of the latter current sheet is ,  however, consistent with the  observations far out 

and south of the  equatorial  plane. Because the  sheet current i s  westward, t h e  effect  

at 6 radii  i s  hard t o  distinguish from t h e  effect  of a r ing  current, and the  nature 

of t h e  dis t inct ion needs consideration. 

Distinction Between t h e  Ring Current and Distortion by t h e  Solar Wind 

It has been s ta ted  that the  r ing  current can be derived from t he  balance 

between t h e  anisotropic pressure of the  trapped par t ic les  and the  force density 

j%B/c. The dis tor t ion by the  wind i s  derived by consideration of t h e  plasma 

flow resul t ing *om the  imbalance between these same forces, but only a qual i ta-  

t i v e  theore t ica l  picture  has yet been obtained. 

effects  cannot be distinguished rigorously i n  terms of physical mechanisms, and 

t h i s  i s  t rue  a f o r t i o r i  i f  the  trapped par t ic les  originate from the  solar wind 

However, t h i s  shows t h a t  t he  two 
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as seems l ikely because of t he i r  s t o r m  time variation. 

then only  be geometrical. 

t he  asymetry of the  observed field far out, and it is clear t ha t  t he  re la t ive  

importance of the wind distortion increases with the  distance from the  earth. 

Both disturbances are established beyond reasonable doubt, but it w i l l  never 

be easy t o  make a rigorous separation of the  two. 

The distinction can 

The axial  symmetry of the ring current contrasts with 
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